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Introduction
● Feedforward neural networks



Recurrent Neural Networks (RNNs)

UNFOLD 
IN TIME

● Networks with feedback loops (recurrent edges)
● Output at current time step depends on current input as well as previous state (via recurrent edges)



Training RNNs
● Backpropagation Through Time (BPTT)

○ Regular (feedforward) backprop applied to RNN unfolded in time
○ Truncated BPTT approximation



Training RNNs
● Problem: can’t capture long-term dependencies due to vanishing/exploding 

gradients during backpropagation

UNFOLD



Long Short-Term Memory networks (LSTMs)
● A type of RNN architecture that addresses the vanishing/exploding gradient problem 

and allows learning of long-term dependencies

● Recently risen to prominence with state-of-the-art performance in speech recognition, 
language modeling, translation, image captioning



LSTMs
Central Idea: A memory cell (interchangeably block) which can maintain its state 
over time, consisting of an explicit memory (aka the cell state vector) and gating 
units which regulate the information flow into and out of the memory.

MEMORY

LSTM Memory Cell



LSTM Memory Cell
Gate (sigmoid layer 
followed by pointwise 
multiplication)

Simplified schematic 
for reference



Cell state vector
● Represents the memory of the LSTM
● Undergoes changes via forgetting of old memory (forget gate) and addition of new 

memory (input gate)

Cell state vector



Gates

● Gate: sigmoid neural net layer followed by pointwise multiplication operator

● Gates control the flow of information to/from the memory

● Gates are controlled by a concatenation of the output from the previous time step and 
the current input and optionally the cell state vector.



Forget Gate
● Controls what information to throw away from memory



Input Gate
● Controls what new information is added to cell state from current input



Memory Update
● The cell state vector aggregates the two components (old memory via the 

forget gate and new memory via the input gate)



Output Gate
● Conditionally decides what to output from the memory



LSTM Memory Cell Summary



LSTM Training
● Backpropagation Through Time (BPTT) most common
● What weights are learned?

○ Gates (input/output/forget)
○ Input tanh layer

● Outputs depend on the task:
○ Single output prediction for the whole sequence (e.g. below)
○ One output at each time step (sequence labeling)



Deep LSTMs

● Deep LSTMs can be created by stacking multiple LSTM 
layers vertically, with the output sequence of one layer 
forming the input sequence of the next (in addition to 
recurrent connections within the same layer)

● Increases the number of parameters - but given sufficient 
data, performs significantly better than single-layer LSTMs 
(Graves et al. 2013)

● Dropout usually applied only to non-recurrent edges, 
including between layers



Bidirectional RNNs
● Data processed in both directions processed with two separate hidden layers, which are then fed 

forward into the same output layer

● Bidirectional RNNs can better exploit context in both directions, for e.g. bidirectional LSTMs perform 
better than unidirectional ones in speech recognition (Graves et al. 2013)



LSTMs for Machine Translation (Sutskever et al. 2014)

● Encoder and decoder LSTMs



Demos
● Handwriting generation demo: 

http://www.cs.toronto.edu/~graves/handwriting.html
● Music composition: 

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neur
al-networks/

● Image captioning and other stuff: 
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Other useful links
● http://deeplearning.net/tutorial/lstm.html
● https://github.com/zhongkaifu/RNNSharp
● http://blog.leanote.com/post/wjgaas@126.com/RNN-and-LSTM-List
● https://deeplearning4j.org/lstm
● https://apaszke.github.io/lstm-explained.html 
● https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1
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